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Algorithms for Designing Wavelets to Match a
Specified Signal

Joseph O. Chapa and Raghuveer M. Rao

Abstract—Algorithms for designing a mother wavelet ( )
such that it matches a signal of interest and such that the family
of wavelets 2 ( 2) (2 ) forms an orthonormal Riesz
basis of 2( ) are developed. The algorithms are based on a
closed form solution for finding the scaling function spectrum from
the wavelet spectrum. Many applications of signal representation,
adaptive coding and pattern recognition require wavelets that are
matched to a signal of interest. Most current design techniques,
however, do not design the wavelet directly. They either build a
composite wavelet from a library of previously designed wavelets,
modify the bases in an existing multiresolution analysis or design
a scaling function that generates a multiresolution analysis with
some desired properties. In this paper, two sets of equations are
developed that allow us to design the wavelet directly from the
signal of interest. Both sets impose bandlimitedness, resulting
in closed form solutions. The first set derives expressions for
continuous matched wavelet spectrum amplitudes. The second set
of equations provides a direct discrete algorithm for calculating
close approximations to the optimal complex wavelet spectrum.
The discrete solution for the matched wavelet spectrum amplitude
is identical to that of the continuous solution at the sampled fre-
quencies. An interesting byproduct of this work is the result that
Meyer’s spectrum amplitude construction for an orthonormal
bandlimited wavelet is not only sufficient but necessary. Specific
examples are given which demonstrate the performance of
the wavelet matching algorithms for both known orthonormal
wavelets and arbitrary signals.

Index Terms—Bandlimited wavelets, constrained optimization,
matched wavelets, orthonormal wavelets.

I. INTRODUCTION

I N [1, Ch. 1] Daubechies introduces the wavelet transform as
“a tool that cuts up data or functions or operators into dif-

ferent frequency components, and then studies each component
with a resolution matched to its scale” [1]. One of the exciting
advantages of wavelets over Fourier analysis is the flexibility
they afford in the shape and form of the analyzer, that which
“cuts up” and “studies” the signal of interest. However, with
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flexibility comes the difficult task of choosing or designing the
appropriate wavelet or wavelets for a given application.

If we look at a multiresolution decomposition as the output
of a bank of matched filters [2], we can see the need for the
analyzing wavelet to “look” like the signal of interest. In signal
detection applications, the decomposition of a signal in the pres-
ence of noise using a wavelet matched to the signal would pro-
duce a sharper or taller peak in time-scale space as compared
to standard nonmatched wavelets. The design techniques devel-
oped to date do not specifically address the need for maximizing
correlation in a signal decomposition.

Daubechies’ classic technique [3] for finding orthonormal
wavelet bases with compact support is often used as the de-
fault in many wavelet applications. However, the wavelets pro-
duced are independent of the signal being analyzed. Tewfik,
Sinha, and Jorgensen [4] have developed a technique for finding
the optimal orthonormal wavelet basis for representing a spec-
ified signal within a finite number of scales. Gopinath, Ode-
gard, and Burrus [5] extended the results of Tewfik,et al., by
assuming bandlimited signals and finding the optimal M-band
wavelet basis for representing a desired signal, again within a
finite number of scales. Both of these approaches seek to repre-
sent a signal over some number of scales. However, the desired
output of a multiresolution decomposition of a bandpass signal
using a matched wavelet is representation in one or at most two
scales.

The wavelet design techniques developed Mallat and Zheng
[6], and Chen and Donoho [7], build nonorthonormal wavelet
bases from a library of existing wavelets in such a way that
some error cost function is minimized. These techniques are
constrained by the library of functions used and do not satisfy
the need for optimal correlation in both scale and transla-
tion. Sweldens developed the lifting scheme for constructing
biorthogonal wavelets [8]. Aldroubi and Unser [9] match
a wavelet basis to a desired signal by either projecting the
desired signal onto an existing wavelet basis, or transforming
the wavelet basis under certain conditions such that the error
norm between the desired signal and the new wavelet basis is
minimum. Both of these techniques are constrained by their
initial choice of MRA.

Apart from being of mathematical interest, the problem
of deriving orthonormal wavelets directly from a signal of
interest has specific application to signal detection, image
enhancement, and target detection, to name a few. In this paper,
we will show that in the case of orthonormal MRA’s with
bandlimited wavelets,there is a solution to finding wavelets that
“look” like a desired signal. The only additional constraints are
thenecessary conditionsfor an MRA and the signal of interest
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itself. While the matching algorithm is sub-optimal in the sense
that it is performed on the spectrum magnitude and phase
independent of one another, we will show by way of examples
that it produces good matching wavelets.

While application of the discrete wavelet transform has so far
been focused mostly on the use of wavelets that are compactly
supported in time (a key reason being the associated digital filter
bank that makes for easy implementation), there are several sit-
uations where bandlimited wavelets and scaling functions are
better suited. Examples can be found in fields such as commu-
nication, signal analysis and pattern recognition [10]–[16]. Even
from an implementation viewpoint, new schemes such as perfect
reconstruction circular convolution filter banks [17], [18] offer
a potentially attractive computational structure for bandlimited
wavelets. Thus there are several motivating factors for further
research into bandlimited wavelets and this paper investigates
their construction. The principal result is a frequency domain
construction that can be viewed as a generalization of the or-
thogonal Meyer wavelets.

This paper is organized into eight sections. Section II con-
tains background information on orthonormal multiresolution
analyzes for use throughout the paper. We develop the ra-
tionale for matching both the amplitude and phase of the
wavelet spectrum in Section III by applying matched filter
theory to the wavelet decomposition. In Section IV, we de-
velop the properties of an orthonormal wavelet that form the
foundation for our matching algorithms, which are developed
in Section V for the continuous case and Section VI for the
discrete case. Section VII gives specific examples demon-
strating the performance of the matching algorithm, followed
by a summary in Section VIII.

II. ORTHONORMAL MRAS

Wavelet transform theory and its application to multiresolu-
tion signal decomposition has been thoroughly developed and
well documented over the past decade [1], [3], [19], [20]–[22].
We will summarize the results of that work for the dyadic case
here for use later in the paper. In an orthonormal MRA (OMRA),
a signal, , is decomposed into an infinite series of
detail functions, , such that [1], [3], [19], [20]–[22]

(1)

The first level decomposition is done by projecting onto
two orthogonal subspaces, and , where

and is the direct sum operator. The projection pro-
duces , a low resolution approximation of , and

, the detail lost in going from to . The
decomposition continues by projecting onto and
and so on. The orthonormal bases of and are given by

(2)

where is the mother wavelet and is the scaling func-
tion [1], [3], [19], [20]–[22], where

(3)

and and are the Fourier Transform of and
, respectively. The projection equations are

(4)

(5)

where and are the projection coefficients and is
the inner product. The nested sequence of subspaces,,
constitutes the multiresolution analysis. For the MRA to be or-
thonormal 1) and must be orthonormal bases of
and , respectively, and 2) , for ; and 3)

, which leads to the following conditions on and
[22], [23]

(6)

(7)

(8)

The Fourier transform of (6) gives the Poisson summation,
which is 1 for all ,

(9)

Since and , they can be
represented as linear combinations of the basis of

(10)

(11)

In the frequency domain (10) and (11) become

(12)

For orthonormal MRAs, the sequences and in (10) and
(11) represent the impulse responses of quadrature mirror filters
(QMF) and have the following properties [19], [24]:

(13)

(14)
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where and are the Fourier transforms of and ,
respectively, and are therefore both-periodic. In this paper,
we will choose

(15)

thereby guaranteeing (14) is always satisfied.

III. SIGNAL DETECTION

Using a matched filter bank interpretation of wavelet trans-
forms [2], we propose to design a wavelet that “matches” the
signal of interest such that the output of the matched filter bank
is maximized. The projection equation for the detail functions,
given in (4), is an inner product integral and can be rewritten in
the frequency domain by way of Parseval’s Identity [22]

(16)

where , is the Fourier trans-
form of . The energy of at a particular scale, , and
translation, , is given by its squared magnitude

(17)

Applying the Cauchy–Schwarz inequality to the right side of
(17) gives

(18)

where the equality holds if and only if

(19)

where both and are complex spectra. Therefore, is
maximized when the complex frequency spectrum of is
identical to that of . Therefore, we would like to develop
a method for matching the complex spectrum of the wavelet to
that of the desired signal while maintaining the conditions for
an orthonormal MRA. However, because the conditions for or-
thonormality are on the spectrum amplitude (Poisson summa-
tion) only, our solution matches the spectrum amplitudes and
group delays independently. While this approach is not ideal
from an optimization standpoint, we will show that it still leads
to good matching wavelets.

One other difficulty in matching the wavelet spectrum di-
rectly to that of the desired signal is the fact that the conditions
for an orthonormal MRA are on the scaling function and its fre-
quency spectrum, not the wavelet specifically. If we were to con-
struct a wavelet that satisfied its conditions for an orthonormal
basis, it would not necessarily lead to a scaling function that gen-
erates an orthonormal MRA [1], [20]. Therefore, we must prop-
agate the conditions for an orthonormal MRA from the 2-scale
sequence and scaling function to the wavelet, match the wavelet
to the desired signal under those conditions, and then calculate
the scaling function and 2-scale sequence always guaranteeing
that the conditions for an orthonormal MRA are satisfied.

IV. PROPERTIES OF AWAVELET IN AN OMRA

Most wavelet construction techniques first find a scaling
function that satisfies (3), (9), and (10) and then calculates
the wavelet using (11) and (15). In this paper, we will show
a wavelet construction technique that matches the wavelet
directly to a signal of interest. To do so, the necessary and
sufficient conditions for an OMRA, which are imposed ex-
clusively on the scaling function, must be transferred to the
wavelet. These conditions will be derived for the wavelet
spectrum amplitude in Section IV-B and the spectrum phase in
Section IV-C.

A. Finding the Scaling Function from a Wavelet

The first step in deriving the OMRA conditions for the
wavelet spectrum amplitude is providing a means of deriving
the scaling function from the mother wavelet. Finding the
wavelet from the scaling function is simple using (11), how-
ever, it is not invertible. To derive an expression for in terms
of , the conditions provided in Section II will be applied
directly. Conditions (3), (6) and (12) are required for to
generate an orthonormal MRA, thereby satisfying (6)–(14),
[23].

From (12) and (13), we get the following expression [1]:

(20)

Repeated substitution of for into (20) gives
the following closed form solution [1]

for (21)

B. Properties of the Wavelet Spectrum Amplitude

Now that we have an expression for finding from ,
we need to develop the constraints on that are necessary
and sufficient to guarantee is an orthonormal basis of .
Using (21), conditions (3), (6), and (12) can be transferred to
conditions on . To guarantee a closed form solution, we
assume the scaling function spectrum is bandlimited with only
a countable number of zeros. With this assumption, we can de-
rive the following theorems for the properties of orthonormal
bandlimited scaling function and wavelet spectra.

Theorem 1 (Bandlimited ): In a multiresolution anal-
ysis, the spectrum of a bandlimited scaling function, ,
with at most a countable number of zeroes, has support on

where

(22)

Furthermore, the following conditions on are necessary
and sufficient for a bandlimited orthonormal scaling function

for

for

(23)
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Proof: Let the half-bandwidth of be . Because
is -periodic, then the half-bandwidth of one of its pe-

riods is obviously . From (12) we see that

(24)

and therefore the half-bandwidth of is for
. The Poisson summation (9) can now be simplified

for a bandlimited orthonormal scaling function as
for . Assuming there are only a

countable number of zeros in the interval , where
is the half bandwidth of , then clearly, .

So let the half bandwidth of be given as
where . Then, from the simplified form of the Poisson
summation given above

for

for

(25)

Because is the Fourier transform of a real, discrete se-
quence, it is -periodic and symmetric, that is

(26)

Furthermore, from (12)

(27)

where again the half bandwidth of is given as
, and so is bandlimited such that .

Assuming for a countable number of points on the
interval , then from (27), the following must
be true:

for

for (28)

By the symmetry requirement in (26b)

(29)

and so the only way for both (28) and (29) to be true is if
. Therefore, the necessary conditions on the half bandwidth

of a bandlimited orthonormal scaling function is ,
for .

Theorem 1 states that a bandlimited orthonormal scaling
function spectrum has support that can vary from to

with the structure given in (23). Because the
orthonormality conditions are in terms of the magnitude of
only and since is bandlimited, the phase of can take on any
function. However, in the next section we will show that the
scaling function phase can be derived directly from the wavelet
phase.

It should be no surprise that a bandlimited scaling function
that generates an orthonormal MRA also gives rise to a ban-
dlimited wavelet.

Corollary 2 (Bandlimited ): In an orthonormal MRA with
a bandlimited scaling function, the corresponding orthonormal
wavelet has support where

(30)

and in (30) takes on the same value asin (22). Furthermore,
can be expressed in terms of as

(31)
The construction of given in (31) exhibits a symmetry
about . This symmetry leads to the following necessary and
sufficient conditions on :

for

for

(32)

Proof: The proof is easily derived by applying the condi-
tions on from Theorem 1. The full proof can be found
in [14].

Corollary 2 says that the spectrum amplitude of an or-
thonormal wavelet defined in the context of an OMRA has
support on that can vary from as the lower
limit to as the upper limit.

Theorem 1 and Corollary 2 completely characterize the spec-
trum amplitudes of bandlimited scaling functions and wavelets
in an orthonormal MRA and provide the necessary and suffi-
cient conditions for their construction.

Two well known wavelets can be derived from Theorem 1 and
Corollary 2 by setting to its minimum and maximum values,
respectively. The first is Shannon’s wavelet, found by setting

. The second example, shown in detail here, can be con-
structed by setting . The scaling function spectrum
amplitude can be written as

(33)

where represents the skirt of the scaling function ampli-
tude spectrum and therefore

(34)

From (23)

(35)
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From (31), the wavelet spectrum amplitude can be written as

(36)

and from (32) the necessary and sufficient conditions for the
wavelet amplitude spectrum with support
are given by

(37)

The wavelet construction given in (36) and (37) can be shown
to be Meyer’s spectrum amplitude construction exactly. There-
fore, while Meyer’s spectrum amplitude construction has been
postulated asonepossible construction, we have shown here that
anybandlimited wavelet that forms a Riesz basis must be a gen-
eralized Meyer’s wavelet.

In the remainder of this paper, we will assume ,
so that the bandlimited wavelet spectrum has support

. The conditions given in (37) will be used in Sec-
tion V to match the wavelet spectrum to a desired signal spec-
trum.

C. Properties of the Wavelet Spectrum Phase

It would be convenient if we could simply set the phase of
to the phase of the desired signal spectrum,, thereby can-

celling the complex component of (19). However, just as in the
previous section we showed thathas specific constraints on
its amplitude, here we will show that has specific constraints
on the structure of its phase as well. First we will develop an
expression for the group delay of in terms of the group
delay of the scaling function spectrum, . Substituting (15)
into (12) gives

(38)

and so the phase of becomes

(39)

where and are the phases of and , respectively.
The negatives of the group delays are denoted asand .
Setting gives

(40)

Next, we will develop an expression for the group delay of
in terms of the group delay of , denoted as . By re-
peated substitutions of the equations in (12) and (15), we get the
following infinite products [3], [22]

(41)

(42)

where is -periodic. Taking the derivative of the phase
of both sides gives the group delay

(43)

(44)

(45)

where ,
and is -periodic. We will

match the group delay of the desired signal with . Before
proceeding, it is important to note some of the properties of the
group delays of , and .

Theorem 3 (Properties of , and ): Let
and , where

and are the phase functions of and ,
respectively. Let where is the

-periodic phase of . Then , and
have the following properties:

(46)

where (47)

(48)

and therefore

(49)

Proof: The proofs for the equations in (46) are trivial.
Since , , and are all real quantities, it can be shown
that , , and are all even functions [30] and
equations (47) and (48) can be proven by substituting

into (43)–(45) and integrating. The full proof of The-
orem 3 can be found in [14].

V. MATCHING WAVELETS

The conditions for wavelet construction developed in the pre-
vious sections can now be applied to matching an orthonormal
bandlimited wavelet to a desired signal, .
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A. Matching Spectrum Amplitudes

To find the wavelet spectrum amplitude that best matches that
of the desired signal, we minimize the following error function:

(50)

where , , and is the scale
factor. Because we are assuming real wavelets only, the wavelet
spectrum is symmetric and the integral need only cover positive
frequencies. The error function given in (50) can be written in a
piecewise fashion as

(51)

Substituting (37) gives

(52)

Taking the derivative of (52) with respect to and setting it
equal to 0 will give the following optimal value for :

(53)
Taking the derivative of (52) with respect toand setting it
equal to 0 will give the following optimal value for the scaling
constant,

(54)

This result says that for the matched wavelet spectrum to be op-
timal, the desired signal spectrum must be scaled by a constant
proportional to a weighted sum of its energy in the passband.

Once is found, can be found for all
using the solution given in (53) for and the con-
ditions in (37),

(55)

VI. DISCRETEMATCHING ALGORITHM

In this section, a practical, fast, closed form discrete solution
for both the wavelet spectrumandits group delay is constructed
which yields wavelet approximations that are very closely

matched to the signal of interest. The results are approxima-
tions in so far that they guarantee the orthonormal wavelet
conditions are satisfied at the sample locations only. However,
the algorithm produces wavelet samples that approach contin-
uous wavelets as the sample spacing tends to 0 at the cost of
computational time.

A. Matching Discrete Spectrum Amplitude

The expression in (21) needs to be converted to a discrete
implementation. However, the infinite summation makes it im-
possible to achieve exact results. Therefore, we have developed
a recursive equation that implements the condition of (21) with
exact results.

Theorem 4 (Finding from ): In an orthonormal
MRA, let and be the sampled scaling
function and wavelet spectra, respectively, with sample spacing

. Any sample of at can be expressed
by the following recursive equation:

for

(56)
which leads to the following closed form solution

for (57)

Furthermore, (56) implies for all .
Proof: Substituting in (20) gives

(58)

However, since for orthonormal MRA’s,
and , and then, for
and for . Now (58) can be rewritten as

for
for

(59)

So, at integer multiples of, can be computed directly from
values of . Furthermore, (59) and the above derivation imply

. Substituting for in (20) gives

for (60)

At integer multiples of , can be computed from values of
and the previously calculated values of. Repeated substi-

tutions leads to the closed form solution in (57). If
has a sample spacing of , then by (57),

has a minimum sample spacing of
and can take on values of

The next step, similar to the conditions in (37) for the contin-
uous case, is to develop the necessary and sufficient condition
on that guarantees orthnormality. Let

(61)

where . The necessary and sufficient condition on
to guarantee that , found in Theorem 4, generates an
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orthonormal MRA can be found by substituting (57) into the
Poisson summation (9). The result is given as follows:

(62)

where

(63)

and is the sample spacing of and
. To determine the specific set of constraint equations,

first expand the summation over. As an example, let so
that . Then (62) becomes

(64)

Because is nonzero on the intervals , for
our example, then only one or two values of in (64) yield
nonzero terms. Furthermore, since we are concerned with de-
signing real wavelets only, the magnitude of the wavelet spec-
trum is even, , and we need only
match the spectra for positive frequency indices,, in the pass-
band. For instance, when , then the only nonzero terms in
(64) occur when and they are and . There-
fore, is a constraint equation for our ex-
ample. When , we get nonzero values when
and , so that , and since is even,
the constraint equation can be rewritten as .
A complete set of linear constraint equations can be constructed
using this technique.

The condition given in (62) generates a set oflinear equality
constraints in of the form

for

(65)
where . Condition (65) can be expressed in
vector notation as

(66)

where is a matrix given by

(67)

and is a vector given by . In the
following theorem, an expression for the optimal wavelet am-
plitude spectrum samples is given.

Theorem 5 (Matched Wavelet Amplitude):Let and be
vectors containing the samples of and ,
respectively, in the passband

(68)

(69)

where is the spectrum of the signal for which we desire a
matched wavelet and is the matched wavelet spectrum. If
the error to be minimized is given by

(70)

then the optimal wavelet power spectrum is given by the fol-
lowing expression:

(71)

where

(72)

where is full rank. The match error is given by

(73)

The resultant wavelet is orthonormal, and the scaling function
it generates by way of (57) generates an orthonormal MRA.

Proof: This constrained optimization problem can be
solved using Lagragian multipliers where (73) is the error
function to be minimized and (66) is the constraint equation.
Solving the Lagrangian, given as

(74)

yields the solutions given in (71)–(73). The matrix can
be shown to be full rank since is upper triangular, and there-
fore its rows are linearly independent [27]. The full proof of
Theorem 5 can be found in [14].

Notice that the error, , in (73) has the form of a Mahalonobis
distance, where acts like a covariance ma-
trix [26]. This implies that the solution is “closest” to the desired
signal spectrum where the distance measure is given in (70).

We have solved the first half of the problem posed by (19),
that of finding the optimal wavelet spectrum amplitude with re-
spect to the input spectrum. The next section develops the algo-
rithm for matching the discrete wavelet group delay (negative
derivative of the phase) to that of the desired signal.

B. Matching Discrete Spectrum Phase

Matching the group delay of a desired signal to the group
delay of a wavelet given in (45) cannot be done in the same
manner as the amplitude matching since there are additional
periodicity constraints on . Furthermore, we still have the
problem of finding the phase of from the phase of . To solve
both problems, we model one period of , denoted as ,
as a polynomial of order . Because is an even function,
the polynomial has only even exponents

(75)
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Fig. 1. Constraint matrix-A.

where are the coefficients of the polynomial and is the
“rect” function defined as

elsewhere.
(76)

Now we construct by replicating every ,

(77)

Like the amplitude matching algorithm, we will develop the
phase matching algorithm for discrete samples of the spectrum.
Let , and be the number of samples in .
Equation (77) can be rewritten in discrete form as

(78)

where is the number of periods over samples and
. The discrete form for can now be

written in vector notation

(79)

where is a vector, is a matrix and
is a vector. The elements of are given as

(80)

Substituting (79) into (45) gives a matrix equation for

(81)

where

(82)

and the elements of and are given in (80)
where and , respectively.

Now all that is left is to derive the expression for that is
closest to the desired signal’s group delay,, in a least squares
sense and yet has the structure of (81) and (82). Letbe the
unweighted error that we wish to minimize

(83)

Since the wavelet phase need only match that of the desired
signal in the passband, we need to weight the error function by
a normalized weighting function. Let ,
where are the elements of derived in Theorem 5. The
weighted error function becomes

(84)

Rewriting (84) in vector notation gives

(85)

where the elements of are the nonzero values of
and the elements of are the corresponding

nonzero values of . The vector, , which minimizes
is found by setting

(86)

The symmetric matrix, is full rank if and only if its
columns are linearly independent [27]. Because the columns of

are based on a geometric series of the column index,, they
must be linearly independent. Therefore, is full rank and
its inverse exists.

It follows that the group delay of the wavelet can be found by
substituting (86) into (81)

(87)

Since we have the best estimate of, we can find and calculate
and directly,

(88)

(89)

where and are the means of and , respec-
tively, and by (43) and (79)

(90)

We subtract the means in (89) so that and have the prop-
erties of Theorem 3. Both and can be summed to obtain
the discrete phases of and that when combined with the
magnitudes from Theorem 5 give the full estimate of
and which satisfy all conditions for an orthonormal
MRA. The QMF filter pair impulse responses,and , corre-
sponding to the matched wavelet and its scaling function can be
found using (12) and the inverse Fourier transform. A flow chart
of the complete algorithm has been provided in more detail in
previous publications [14].
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Fig. 2. Transient signal.

Fig. 3. Desired signal spectrum and Poisson sum—transient.

VII. EXAMPLES

In this section, we will demonstrate the performance of both
the magnitude and phase matching algorithms with an example.
The amplitude matching algorithm was demonstrated on sym-
metric signals (zero phase), including Meyer’s wavelet and a
nonorthonormal, truncated Gaussian, in previous conference pa-

pers [28], [29]. Here we will demonstrate both the magnitude
and group delay matching algorithms’ performance on an asym-
metric signal. In the following example, we set , and

so that . In each of the figures shown, the
input signal is a dotted line and the matched signal is a solid
line. With , the nonzero frequency indices in (65) are

. The equality constraints in (62) and (63)



www.manaraa.com

3404 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 12, DECEMBER 2000

Fig. 4. Amplitude match in the passband—transient.

Fig. 5. Matched wavelet group delay versus desired—transient.

generate equations and unknowns represented
by the matrix in Fig. 1. We will use this matrix for matching
a wavelet to the transient signal. For our example, we use a tran-
sient sinusoid given by the following equation:

(91)

where is the unit-step function. The transient signal in this
example was constructed by setting and , and

dilating it such that its spectrum, , had maximum energy
in the passband, . Fig. 2 shows the tran-
sient signal. The transient signal amplitude spectrum and it’s
associated Poisson summation show in Fig. 3 that the signal is
clearly nonorthonormal. Fig. 4 shows the result of matching the
wavelet in the positive passband, where . The group
delays of the desired signal, , and the matched wavelet, ,
are shown in Fig. 5. Since is not a wavelet, we wouldn’t
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Fig. 6. Matched wavelet versus desired signal—transient.

Fig. 7. Discrete wavelet decomposition of transient signal.

expect its phase to have the required structure. However, no-
tice that the matched wavelet group delay does have the re-
quired structureandmatches the desired group delay very well
in the passband. The matched wavelet is shown in Fig. 6. The
inner product of with its matched wavelet, gives

. Even though

is not bandlimited, its correlation with the matched wavelet
still produces a value very near 1.0, with very little spread in
translation. Therefore, constraining the matched wavelets to be
bandlimited is not a significant impediment, but in fact should
provide very good segmentation across scales. Fig. 7 show the
wavelet decomposition of the transient signal using the matched
wavelet. Matching clearly results in a prominent peak at the ap-
propriate time and scale location.

VIII. SUMMARY

In this paper, we have further developed the bandlimited
orthonormal wavelet for applications requiring a matched filter
approach. We have shown that for bandlimited orthonormal
wavelets, Meyer’s spectrum amplitude construction is not
only sufficient, but necessary. We have developed closed form
expressions in the continuous domain for directly matching
wavelet spectrum amplitudes to that of a desired signal. We
have developed a fast numerical algorithm for finding matched
wavelet amplitude spectra and group delays using sampled data
that yield good matched wavelets. In the future, we will begin
to apply this algorithm to image processing applications and
communications applications where signal detection and signal
enhancement are required.
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